Full HTML


The human microbiome and its expanding role in health and pharmacology

Ashvini Arun Kakad1*, Rucha A Ingle1, Aarti Mahadev Nimse1, Rutuja Devidas Giram1, Shatrughna Uttam Nagrik 1

Author Affiliation

1Anuradha College of Pharmacy, Chikhali, Puna, Maharashtra, India

Abstract

The broad group of bacteria that live in the human body is called the microbiome. This has recently become an important component of pharmacology, and it offers some of the latest insights into drug processing, effectiveness, and safety. Recent investigations have underlined once again the crosstalk between microbiome and pharmacokinetics: gut microorganisms influence how medications are absorbed, distributed, metabolized, and excreted. The consequences of this relationship in terms of personalized treatment are most relevant because the individual profiles of the microbiome of a person might influence their response to medications and their vulnerability to toxicity. In addition, microbiome manipulation could be used to make care more efficient and diminish adverse effects. It discusses the latest advances in microbiome research, their impact on drug development and clinical practice, and potential future ways in which knowledge regarding the microbiome can be integrated into pharmacological research. This rapidly growing field is promising to transform medication therapy and optimize treatment techniques through the linkage of microbiome science to pharmacology.

DOI: 10.18231/j.yjom.2024.020

Keywords: Microbiome, Gut microbiota, Fecal Microbiota Transplantation, Microbiome Therapeutics

Pages: 190-196

View: 21

Download: 27

DOI URL: https://doi.org/10.18231/j.yjom.2024.020

Publish Date: 15-12-2024

Full Text

Introduction

Bacteria, archaea, fungi, and viruses make up the human microbiome. These mainly found in the gastrointestinal tract form an elaborate ecology with a host and are crucial to human health. This is considered the first thorough research on the microbiome. It was discovered that the number of microbial cells exceeded human cells and were home to a large number of genes, which were termed the ’second genome’. The second genome is also known as the microbiome which plays a role in many biological processes and may be quite different from one individual to another. It is influenced by a range of factors such as genetics and food and exposure to the environment around it. 1 Research has also underscored the ever-changing

References

1.    Consortium HMP. Structure, function, and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–14.
2.    Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI, et al. The human microbiome project. Nature. 2007;7164:804–10.
3.    Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65.
4.    Flint HJ, Scott KP, Louis P, Duncan SH. The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol. 2012;9(10):577–89.
5.    Leblanc JG, Milani C, De Giori G, Sesma F, Sinderen DV, Ventura
M. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol. 2013;24(2):160–8.
6.    Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012;336(6086):1268– 73.
7.    Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: An integrative view. Cell. 2012;148(6):1258–70.
8.    Schulz MD, Atay C, Heringer J, Romrig FK, Schwitalla S, Aydin B, et al. High-fat-diet-mediated dysbiosis promotes intestinal carcinogenesis independently of obesity. Nature. 2014;514(7523):508–12.
9.    Wilson ID, Nicholson JK. Gut microbiome interactions with drug metabolism: A missing link in personalized medicine. Pharmacol Therap. 2017;172:30–42.
10.    Jiang C, Li G, Huang P, Liu Z, Zhao B. The gut microbiota and Alzheimer’s disease. J Alzheimer’s Dis. 2020;73(4):1239–52.
11.    Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI, et al. The human microbiome project. Nature. 2007;7164:804–10.
12.    Samuel BS, Hansen EE, Manchester JK, Coutinho PM, Henrissat B, Gordon JI, et al. Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. Proceed Na Acad Sci. 2007;104(25):10643–8.
13.    Underhill DM, Iliev ID. The mycobiota: Interactions between commensal fungi and the host immune system. Nat Rev Immunol. 2014;14(6):405–16.
14.    Reyes A, Haynes M, Hanson N, Angly FE, Heath AC, Rohwer F, et al. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature. 2010;466(7304):334–8.
15.    Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486(7402):222–7.
16.    Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proceed Nat Acad Sci. 2010;107(26):11971–5.
17.    Zhu B, Wang X, Li L. Human gut microbiome: The second genome of human body. Protein Cell. 2010;1(8):718–25.
18.    Cryan JF, Dinan TG. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012;13(10):701–12.
19.    Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012;336(6086):1268– 73.
20.    Flint HJ, Scott KP, Louis P, Duncan SH. The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol. 2012;9(10):577–89.
21.    Swann JR, Want EJ, Geier FM, Spagou K, Wilson ID, Sidaway JE, et al. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proceed Nat Acad Sci. 2011;108(1):4523– 30.
22.    Enright EF, Gahan CG, Joyce SA. The impact of the gut microbiota on drug metabolism and clinical outcome. Yale J Biol Med. 2016;89(3):375–82.
23.    Clarke G, Sandhu KV, Griffin BT, Dinan TG, Cryan JF, Hyland NP, et al. Gut reactions: Breaking down xenobiotic-microbiome interactions. Pharma Rev. 2019;71(2):198–224.
24.    Haiser HJ, Gootenberg DB, Chatman K, Sirasani G, Balskus EP, Turnbaugh PJ, et al. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science. 2013;341(6143):295–8.
25.    Peppercorn MA, Goldman P. The role of intestinal bacteria in the metabolism of salicylazosulfapyridine. J Pharma Exp Therap. 1972;181(3):555–62.
26.    Gonzalez A, Vazquez-Baeza Y, Inlay MA, Stumpf S, Escapa IF, Walters WA, et al. The mind-body-microbial continuum: Evolving views on the gut-brain axis. Microbiome. 2016;4(1):1–10.
27.    Wallace BD, Wang H, Lane KT, Scott JE, Orans J, Koo JS. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science. 2010;330(6005):831–5.
28.    Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillère R, Hannani D, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science. 2013;342(6161):971–6.
29.    Elrakaiby M, Dutilh BE, Rizkallah MR, Boleij A, Cole JR, Boleij A, et al. Pharmacomicrobiomics: The impact of human microbiome variations on systems pharmacology and personalized therapeutics. OMICS: A J Integrat Biol. 2014;18(7):402–14.
30.    Haiser HJ, Gootenberg DB, Chatman K, Sirasani G, Balskus EP, Turnbaugh PJ, et al. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science. 2013;341(6143):295–8.
31.    Wilson ID, Nicholson JK. Gut microbiome interactions with drug metabolism: A missing link in personalized medicine. Pharmacol Therap. 2017;172:30–42.
32.    Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 2018;359(6371):97– 103.
33.    Zimmermann M, Kogadeeva MZ, Wegmann R, Goodman AL. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature. 2019;570(7762):462–7.
34.    Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: An integrative view. Cell. 2012;148(6):1258–70.
35.    Yu J, Feng Q, Wong SH, Zhang D, Liang QY, Qin Y. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut. 2017;66(1):70–8.
36.    Spanogiannopoulos P, Bess EN, Carmody RN, Turnbaugh PJ. The microbial pharmacists within us: A metagenomic view of xenobiotic metabolism. Nat Rev Microbiol. 2016;14(5):273–87.
37.    Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11(8):506–14.
38.    Slavin J.  Fiber and prebiotics: Mechanisms and health benefits.
Nutrients. 2013;5(4):1417–35.
39.    Zhang N, Ju Z, Zuo T. Time for food: The impact of diet on gut microbiota and human health. Nutrition. 2015;31(3):365–70.
40.    Nood EV, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, De Vos W, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. New Eng J Med. 2013;368(5):407–15.
41.    Kelly CR, Khoruts A, Staley C, Sadowsky MJ, Abd M, Alani M, et al. Effect of fecal microbiota transplantation on recurrent Clostridium difficile infection in patients with inflammatory bowel disease: A double-blind, placebo-controlled randomized trial. Gut Microbes. 2015;6(3):234–42.
42.    Kao D, Hotte N, Gillevet P, Madsen K, Faure H. SER-109, a rationally designed microbiome therapeutic, to reduce recurrent Clostridium difficile infection in patients with CDI. J Gastroenterol Hepatol. 2017;32(2):53–9.
43.    Roy S, Trinchieri G. Microbiota: A key orchestrator of cancer therapy. Nat Rev Cancer. 2017;17(5):271–85.